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Abstract 

Recent studies propose deep learning-based methods to recognize symbols and text, the 

primary components of Piping and Instrumentation Diagrams (P&ID). However, existing 

studies implement a complex process where the object detection model consists of two 

individual detection models for symbol and text, and the text recognition model is separated 

from the text detection model. Therefore, we propose an integrated model with a single symbol-

text detection module and text recognition module by applying a text spotting method which 

utilizes the detected text features for recognition. Our proposed model extracts detected text 

regions’ features which are encoded with local information of characters for text recognition, 

eliminating the need for multiple layers for encoding local information of characters in our text 

recognition module. Thus, our text recognition module, being lightweight, reduces the time 

required for text recognition. Furthermore, as our proposed model facilitates end-to-end 

learning between the symbol-text detection and the text recognition modules, it enables 

semantic information transmission between these modules, resulting in better text detection 

and recognition compared to the process where symbol-text detection and text recognition 

models are separated. Additionally, during the training phase of our proposed model, the text 

recognition module leverages text features, eliminating the need to generate and store text 

images for training. To identify the practical applicability of our proposed model, we tested our 

proposed model on P&ID images used in actual industries. The results for symbol-text 

detection/text recognition performance, with an IoU (Intersection over Union) threshold of 0.5, 

were evaluated as a maximum precision of 97.63%/95.27%, recall of 95.21%/90.75%, and F1 

score of 96.40%/92.95%. 
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1. Introduction 

Piping and instrumentation diagrams (P&IDs) are detailed schematics that depict the process 

flow within a plant or industrial facility. P&IDs include various piping, process equipment, 

instruments, and control devices used to monitor and control the process, as well as 

identification numbers, labels, and annotations. P&IDs are crucial for the design, construction, 

operation, and maintenance of process systems. They serve as visual references for engineers, 

operators, and maintenance personnel to understand how systems operate, troubleshoot issues, 

and ensure that systems operate safely and efficiently within defined regulations. 

 

Digital P&IDs store information about objects in a database, making it easy for users to identify 

objects. Additionally, they are convenient because they can be modified using software. 

Furthermore, digital P&IDs are typically saved in electronic file formats, making them easy to 

share and store digitally. Therefore, in recent years, digital P&IDs, which allow easy access to, 

and modification of information represented in diagrams, have been widely adopted in the 

industry. 

 

Due to the various advantages of digital P&IDs, EPC (Engineering, Procurement, and 

Construction) companies utilize them in project execution. However, during projects, EPC 

companies often receive P&IDs in image format from collaborating companies, which can 

hinder the utilization of digital P&IDs. Furthermore, older plants, in contrast to recently 

constructed ones, possess P&IDs in image format as they were produced through analog 

methods before the advent of digital P&IDs. Consequently, these aging plants are unable to 

leverage the benefits of digital P&IDs for plant improvement and expansion. To harness the 

advantages of digital P&IDs, it is necessary to recognize the components of non-digital P&IDs 

and undergo a process of digitization. 



In P&ID drawings, there are main components consisting of symbols and text. Symbol types 

include piping, equipment, and instrumentation, while text is present to provide identification 

numbers or relevant information for the symbols. Typically, in industry, high-level objects 

existing in image-format P&IDs are manually identified by workers and then converted into 

digital P&IDs through manual labor. This method is time-consuming and incurs significant 

costs due to the use of specialized personnel. Additionally, the outcome of converting to digital 

P&IDs may vary depending on the worker's expertise. 

 

Due to the drawbacks associated with manually converting image-format P&IDs to digital 

P&IDs, research on deep learning-based P&ID recognition for automatic digital P&ID 

conversion has been proposed. Process in Figure 1-(a) illustrates the method used by existing 

studies [1, 2, 3, 4, 5] to recognize P&ID symbols and text. The P&ID symbol and text 

recognition process in existing studies proceeds with separate object detection and text 

recognition models. The object detection model consists of two individual detection models 

for symbols and text, and the text recognition model recognizes characters of detected text 

images extracted from the P&ID drawing. When the text detection model and text recognition 

model are separated, the text recognition model cannot acquire features for recognition from 

the text detection model. Therefore, the text recognition model needs a large module consisting 

of multiple layers to encode local information of text images. It increases the size of the text 

recognition model and slows down text recognition speed. Additionally, when the text detection 

model and recognition models are separately trained, it is difficult to obtain better text detection 

and recognition results than when the two models are integrated. This is because semantic 

information transmission between the text detection model and the recognition model is not 

possible. 

 



In this study, we propose a model where the symbol-text detection module and text recognition 

module are integrated, as illustrated in Figure 1-(b). The proposed model detects symbols and 

text with a single detection module [49], and then extracts features of detected text regions for 

text recognition. Extracted features for text recognition are already encoded with local 

information of characters, so the text recognition module doesn’t need multiple layers to encode 

local information of text features. Consequently, text recognition is possible with a lightweight 

text recognition module. Furthermore, since the proposed model is an integrated model with 

the symbol-text detection and text recognition modules, they are trained together. Therefore, 

the proposed model is trained to facilitate semantic information transmission between the text 

detection and recognition results, enabling more accurate text detection and recognition results 

compared to the process where symbol-text detection and text recognition models are separated.  

Fig. 1. Comparison with proposed method and previous methods. 

 

The academic contributions are as follows. 

 First, to the best of the author's knowledge, this is the first study to conduct text 



spotting for both text and multi-class objects. The text spotting model is an integrated 

model with the text detection and recognition modules utilizing detected texts’ 

features for recognition, which have primarily been researched for text only. However, 

our proposed model consists of a single symbol-text detection module, not divided 

into symbol detection and text detection modules, also our proposed model’s 

lightweight text recognition module recognizes characters of text quickly by 

leveraging text features among multiple symbol classes and text classes. 

 Second, unlike previous research [4], which required generating and storing text 

images for training the text recognition model, our proposed model trains the text 

recognition module without this step, thereby achieving maximum performance for 

recognizing texts within P&ID drawings. Since our proposed model trains the 

symbol-text detection and text recognition modules together, only the ground-truth 

text needs to be labeled in the detection dataset. 

 Lastly, the feasibility of the proposed method for real-world applications was 

confirmed. Symbol and text detection performance, as well as text recognition 

performance, were measured for P&ID drawings used in industries. Each of the 20 

test drawings, consisting of 82 classes, contains a dense presence of symbols and texts 

ranging from a minimum of 248 to a maximum of 1120 instances per drawing. For 

the 20 P&ID test drawings, the proposed model achieved a maximum precision of 

97.63%/95.27%, recall of 95.21%/90.75%, and F1 score of 96.40%/92.95% for 

symbol-text detection/text recognition. 

 

The remaining content of this paper is described as follows. Section 2 provides an overview of 

related works. Sections 3 and 4 contain detailed explanations of our proposed methodologies 



and experimental results, respectively. Finally, Section 5 includes conclusions and future works. 

 

2. Related works 

2.1. P&ID recognition 

Many studies have proposed approaches to P&ID recognition based on deep learning. [1, 2, 3, 

4, 5] address symbol and text detection as well as text recognition. [1, 5] utilize GFL [10] as 

the symbol detection model. [2, 3] employ FCN [11] and CNN (Convolutional Neural 

Network), respectively, for symbol detection. [4] detects symbols using template matching. For 

text detection, [2] uses CTPN [12], while [1, 5] uses CRAFT [13]. [3] utilizes EAST [7] for 

text detection. [4] extracts text contour regions as a pre-process before text recognition. [1, 2, 

3, 4, 5] utilize Tesseract OCR [9] for text recognition, and [4] further enhances text recognition 

accuracy by storing text images which the text recognition model failed to predict in a database 

for training the text recognition model. 

 

The existing P&ID recognition process utilizes individual models for symbol and text detection. 

Text regions acquired through the text detection model are extracted as images and then the 

text recognition model recognizes characters in text images. When the text detection and 

recognition models are separated, images are used instead of features acquired from the text 

detection model for recognition. Consequently, modules consisting of multiple layers for 

encoding local information of text images are required, leading to an increase in the size and 

recognition time of the text recognition model. Additionally, when the text detection and 

recognition models are trained separately, the lack of semantic information transmission 

between them makes it challenging to achieve better text detection and recognition. In this 

study, by proposing an integrated model with a single symbol-text detection module and a 

lightweight text recognition module, fast and accurate P&ID symbols and text recognition 



becomes possible. 

 

2.2. Object detection 

Object detection is a task in the field of computer vision, involving the classification and 

localization of objects within a given image. With the emergence of CNN [14], deep learning 

has become the primary method for object detection in various fields [6, 16, 33]. In deep 

learning-based object detection, when an image is inputted, the model independently extracts 

features and performs learning, allowing it to simultaneously determine the coordinates of 

bounding boxes representing the location of objects in the image, their classes, and confidence 

scores for detection. Methods of deep learning-based object detection can generally be 

distinguished concerning anchor boxes. 

 

Anchor boxes are pre-defined bounding boxes used to detect objects in an image. During the 

training of anchor-based detectors, these anchor boxes are adjusted to ensure effective object 

detection. Single-stage detectors utilizing anchors such as RetinaNet [15] and DDOD [17] 

classify and locate objects in one step without region proposals. In contrast, two-stage detectors 

like Faster R-CNN [18] utilize a Region Proposal Network (RPN) [18] to first identify potential 

object locations and then extract features from these locations to determine the classes and 

positions of objects. Recently, research has extended beyond these two stages to multi-stage 

object detection methods, such as Cascade R-CNN [19] and Sparse R-CNN [20]. Cascade R-

CNN [19] achieves refined detection by increasing the IoU threshold at each stage. Sparse R-

CNN [20] provides a fixed number of candidate objects and refines the bounding boxes of these 

candidates in each stage to match the regions of interest for the objects being detected. 

 

Among anchor-free methods, one approach is based on key points [21,22]. CornerNet [21] 



utilizes top-left and bottom-right corners for object detection, while CenterNet [22] uses the 

center of the bounding box as a key point. FCOS [23] and Varifocalnet [24] detect objects 

without using anchors, employing a structure consisting of backbone-FPN (Feature Pyramid 

Network) [26]-heads. FCOS is structured with ResNet [25]-FPN-Head and generates a 

centerness map to remove low-quality bounding boxes in addition to the object class and 

bounding box coordinates as output. Varifocalnet [24], combining FCOS [23] and ATSS [27], 

improves performance through a proposed loss function and star-shaped bounding boxes. 

Besides, studies that utilize transformer encoder-decoder [28] structures with object queries for 

object detection such as DETR (Detection Transformer) [29] and Deformable DETR [30] have 

been proposed. 

 

Traditionally, object detection models have been categorized into single-stage and two-stage 

approaches. Single-stage object detection models are generally simpler in structure, allowing 

for fast detection but were considered to have lower performance compared to two-stage 

models. However, advancements in single-stage methods have enabled fast and accurate 

detection even with simple structures. Therefore, in most previous P&ID recognition studies, 

symbol detection models were selected through comparisons among single-stage object 

detectors. However, to select the most superior model for symbol and text detection, we 

compared single-stage, multi-stage, anchor-free, and transformer-based object detection 

models. The structure of Sparse R-CNN [20] which is a multi-stage but fast object detection 

model, is utilized as the detection module of our proposed model. 

 

2.3. Text recognition 

Text recognition is one of the tasks in the field of computer vision, aiming to recognize the text 

present in given images. Currently, the text recognition field is referred to as Scene Text 



Recognition, which recognizes text appearing in natural images with diverse backgrounds. 

Various deep learning-based approaches with different structures have been proposed for Scene 

Text Recognition. 

 

Rosetta [31] and SVTR [32] recognize text by distinguishing the visual characteristics of 

characters in text images. They can infer text quickly as they do not require additional tasks 

considering the context or relationships of characters. Rosetta [31] is a CNN-based text 

recognition model that uses ResNet-18 as its backbone. SVTR [32] is a vision transformer-

based [48] text recognition model. SVTR [32] reduces the height of extracted features through 

patch embedding while encoding both local and global information of characters. 

 

The model CRNN [34] is structured by combining CNN and RNN (Recurrent Neural Network). 

CRNN initially extracts visual features of characters in text images by using CNN and then 

recognizes text by considering the context of visual features with RNN. Subsequently, many 

studies proposing text recognition through encoder-decoder structures such as SEED [35] and 

ASTER [36] have emerged. These studies utilize attention mechanisms to consider the 

relationships between characters for recognition. Recently, research has also proposed methods 

such as ABINet [37] and SRN [38], which fuse the visual information of characters with 

linguistic rules considering the relationships between characters. The studies mentioned above 

have improved text recognition performance by considering the continuity of characters within 

the text and the relationships between characters. However, as the size of the models increases, 

the recognition speed may decrease. 

 

In this study, we utilized partial structure of text recognition model which rely solely on the 

visual features for text recognition as our text recognition module, because it is challenging to 



perceive relationships between characters in the text of P&ID. As depicted in the left image of 

Figure 2, the scene text consists of words existing in the surrounding environment, thus 

exhibiting regularity. Therefore, it is possible to infer the next character based on the 

relationships between characters. However, as depicted in the right image of Figure 2, P&ID 

text represents identification numbers or process information, making it difficult to perceive 

relationships between characters. Thus, partial structure of text recognition model capable of 

recognizing characters without considering the context or relationships between characters was 

utilized as our text recognition module.  

Fig. 2. Comparison with scene text and P&ID text. 

 

2.4. Text spotting 

Text spotting is a method that enables an end-to-end manner from text detection to text 

recognition. There are two approaches to achieving end-to-end manner from text detection to 

recognition. The conventional approach utilizes a process where the text detection and 

recognition model are separated. The process recognizes characters of text images that are 

extracted from the detected regions. [39, 40] are studies that utilize a process where text 

detection and recognition models are separated. [39, 40] constitute a series of studies, where 

the text detection model is structured with convolution layers added to the backbone. For text 

recognition, CRNN [34] was utilized. 

 



Recently, studies like [41, 42], where features extracted from detected text regions are utilized 

for recognition. [41] employs an MLP (Multi-Layer Perceptron) for the classification and 

regression of proposed regions, and utilizes a Region Feature Encoder [41] for text feature 

extraction. An encoder-decoder is used for recognizing the extracted features. [42] utilizes a 

CNN-based detection module to detect text, and then extracts features from detected regions 

using a Text-Alignment layer [42]. The extracted features are then recognized through an 

encoder-decoder module. 

 

Research on P&ID recognition typically employs a process where the text detection and 

recognition models are separated. Consequently, when the text detection and recognition 

models are trained separately, it becomes difficult to transmit semantic information between 

them, making it challenging to obtain better results for text detection and recognition. On the 

other hand, we propose a new integrated model with symbol-text detection and text recognition 

modules. The proposed model not only detects text but also detects symbols and text together, 

and then utilizes features of detected text regions for recognition. 

 

3. Methodology 

In this study, we propose a model that integrates a single symbol-text detection module with a 

text recognition module by applying a text-spotting method. The proposed model is capable of 

end-to-end learning from symbol-text detection to text recognition modules. The description 

of the proposed model proceeds as follows: Section 3.1 describes the overall structure of the 

proposed model. Sections 3.2 and 3.3 explains details of the single symbol-text detection 

module and the text recognition module, respectively. Finally, Section 3.4 describes the training 

method of the proposed model. 

 



3.1. Overall Architecture 

Figure 3 illustrates the overall structure of the proposed model. The P&ID patches are images 

sliced from drawings using a sliding-window method. The P&ID patches are utilized as inputs, 

and a shared backbone generates four feature maps reduced in size by 1/4, 1/8, 1/16, and 1/32 

from the input image. The shared backbone, serving as the backbone for both the symbol-text 

detection module and the text recognition module, employs ResNet50-FPN (Feature Pyramid 

Network). Subsequently, the symbol-text detection module detects symbols and texts for each 

patch. For the detected text regions, features for recognition are extracted from the feature maps 

using RoI Align [43]. After symbol-text detection and text feature extraction for all patches are 

completed, the detection results consist of confidence scores, class numbers, and coordinates 

of detected regions for symbols and texts. Additionally, extracted features are added for texts. 

Before applying Adaptive NMS (Non-maximum Suppression) [45] to the detection results, the 

coordinate values representing the detection regions of symbols and texts in the patch images 

are converted to coordinates within the entire P&ID drawing. Then, Adaptive NMS, as 

described in [1], is applied to remove duplicate detection results. Duplicate detection results 

are removed because during the step of converting the P&ID drawing into patch images using 

the sliding window method, objects might be redundantly included in the patch images. After 

removing duplicated symbols and texts through Adaptive NMS, the features retained from text 

detection results among the remaining detection results of symbols and texts are used as inputs 

for the text recognition module. After the text recognition stage, the text results contain text 

detection results with their recognized texts. Finally, the entire P&ID drawing is recognized 

based on the text results and symbol results. 



Fig. 3. Over architecture of proposed method. 

 

3.2. Symbols and Text Detection Module 

Prior research has been conducted to select the symbol-text detection module of the proposed 

model. Table 1 compares the performance of object detection models' P&ID symbols and text 

detection. 

Table 1. 

Object detection models’ performance on P&ID images. 

Model Deformable DETR Sparse R-CNN DDOD VarifocalNet 

Schedule 3x 1x 1x 2x 

Training 

Time 
2d 5h 12h 12h 23h 

Precision 0.9679 0.9765 0.9642 0.9241 

Recall 0.9452 0.9492 0.9188 0.8972 

AP 0.308 0.383 0.235 0.347 

AP50 0.365 0.417 0.257 0.384 

AP75 0.334 0.404 0.256 0.379 

 

To select the symbol-text detection module of the proposed model, representative models were 

selected from overall deep learning-based object detection methods. The chosen object 

detection models include Deformable DETR [30] with an encoder-decoder structure, Sparse 

R-CNN [20] from the multi-stage family, DDOD [17] as a single-stage model, and VarifocalNet 



[24] based on anchor-free methods. According to the experimental results shown in Table 1, 

Sparse R-CNN exhibited the best performance for symbol-text detection in P&ID drawings 

while requiring shorter training time. Sparse R-CNN first identifies a fixed number of potential 

locations where objects might exist and then performs classification and regression, leading to 

better detection results. Therefore, the proposed model utilized the structure of Sparse R-CNN 

as the symbol-text detection module. 

 

The symbol-text detection module in the proposed model provides a fixed number of proposal 

regions for each P&ID patch image to detect symbols and text. Unlike other object detection 

models that typically provide proposal regions through RPN, our symbol-text detection module 

utilizes an Nx4-sized lookup table trained on the training dataset to provide a fixed number of 

proposal regions. Here, N represents the number of proposal regions, set to 100. The 4 denotes 

the normalized center (x, y), height, and width of the bounding box representing the proposal 

region. The bounding boxes representing proposal regions of size Nx4 indicate potential 

locations of symbols and texts regardless of the input image. Additionally, an Nxd-sized lookup 

table trained on the training dataset is provided. The Nxd (=256) sized lookup table 

complements the information provided by Nx4-sized proposal regions. When Nx4-sized 

proposal regions and Nxd-sized features are provided together, the symbol-text detection 

module classifies and refines the bounding boxes of proposal regions gradually to match the 

regions of symbols and text in the input image through the Dynamic Instance Interactive Head 

[20] present at each of the I (=6) stages. 

 

The advantage of utilizing the structure of Sparse R-CNN for the symbol-text detection module 

is that it identifies unnecessary regions through 6 stages without the need for the NMS (Non-

Max Suppression) stage, as it uses a fixed number of proposed regions. Thus, despite being a 



multi-stage detection module, it enables fast and accurate symbol-text detection. 

 

Finally, symbols detected through 6 stages for each patch image retain their confidence score, 

class number, and coordinates of the detected region. The detected text retains its confidence 

score, class number, coordinates of the detected region, and corresponding regions’ features 

extracted from the feature maps generated by the shared backbone using RoI Align. These 

extracted text features are later used for recognition in the text recognition module. 

 

For training the detection module, a multi-loss used in Sparse R-CNN is utilized, along with 

the application of set prediction loss [29]. The set prediction loss computes the loss through 

optimal bipartite matching between a fixed number of proposal regions and ground-truth 

objects. Hence, each loss within 𝐿𝑑𝑒𝑡 is normalized by the number of matched pairs (=M) 

between ground-truth and predicted objects in the training batch. 

𝐿𝑑𝑒𝑡 = λ𝑐𝑙𝑠𝐿𝑐𝑙𝑠 + λ𝑔𝑖𝑜𝑢L𝑔𝑖𝑜𝑢 + λ𝐿1𝐿𝐿1 (1) 

𝐿𝑐𝑙𝑠 =−
1

𝑀
∑ 𝛼(1 − 𝑝𝑖)

𝛾𝑙𝑜𝑔(𝑝𝑖)
𝑀
𝑖=1  (2) 

Lgiou = 
1

𝑀
∑ (1 − 𝐺𝐼𝑜𝑈)𝑀

𝑖=1  (GioU = 
|𝑏𝑖 ∩ 𝑏𝑖

^|

|𝑏𝑖 𝑈 𝑏𝑖
^|

 - 
|𝑠𝑖\(𝑏𝑖 𝑈 𝑏𝑖

^)|

|𝑠𝑖|
) (3) 

L𝐿1 = 
1

𝑀
∑ (∑ |𝑦𝑖𝑗 − 𝑦^𝑖𝑗|4

𝑗=1 )𝑀
𝑖=1  (4) 

𝐿𝑐𝑙𝑠 is the loss function for classification, employing focal loss [15]. Here, 𝑝𝑖 represents the 

predicted probability value, while 𝛼 and 𝛾 serve as balancing and focusing parameters. 𝛼 

is used to address class imbalance, while 𝛾 adjusts the down-weighting for easily classified 

cases. 𝐿𝑔𝑖𝑜𝑢 and 𝐿𝐿1 are loss functions related to the regions of detected and ground-truth 

bounding boxes. 𝐿𝑔𝑖𝑜𝑢 denotes the generalized IoU loss [46]. In the equation, 𝑠𝑖 represents 

the minimum-sized bounding box containing both the ground-truth 𝑏𝑖  and predicted 𝑏𝑖
^ 

bounding boxes. By using 𝐿𝑔𝑖𝑜𝑢, even if the ground-truth and detected bounding boxes do not 



overlap, the extent to which they are separated is reflected in the loss, resulting in better 

detection results. 𝐿𝐿1 loss refers to the difference in center (x, y), height, and width between 

ground-truth and detected bounding boxes. The predicted value 𝑦𝑖𝑗
^  trained to closely match 

the value of the ground-truth 𝑦𝑖𝑗. In our experiment, we fixed λ𝑐𝑙𝑠 = 2, λ𝐿1 = 5, λ𝑔𝑖𝑜𝑢 = 2 

as default values and conducted the experiments. 

 

Once the symbol-text detection and text feature extraction for all patch images of the entire 

P&ID drawing is completed, the next step is to remove duplicate objects. When generating 

patch images from the entire P&ID drawing using a sliding window manner, an object may be 

redundantly included in different patch images. Therefore, to output the results for the entire 

P&ID drawing based on the detection results of P&ID patch images, duplicate objects included 

in different patch images must be removed. 

 

To remove duplicate objects, the coordinates of the detected symbols and texts in P&ID patch 

images need to be converted to coordinates in the entire P&ID drawing. By converting the 

coordinates of the detection results for P&ID patch images to coordinates in the entire P&ID 

drawing, detected symbols are composed of (confidence score, class number of the symbol, 

coordinates of the symbol region in the entire P&ID drawing), and detected texts are composed 

of (confidence score, text class number, coordinates of the text region in the entire P&ID 

drawing, feature extracted from the feature maps). 

 

Subsequently, Adaptive NMS is employed for removing duplicate detections. By utilizing 

Adaptive NMS as a method for removing duplicate detections, different IoU thresholds are 

applied for each class. This allows for setting higher thresholds for densely clustered classes to 

retain duplicate detections, while lowering the threshold for sparsely clustered classes to 



remove duplicate detections. 

 

3.3. Text Recognition Module 

After removing duplicate objects through the Adaptive NMS, the features of the detected texts 

are used as inputs to the text recognition module among the remaining detected symbols and 

texts. As a text recognition module, CNN-based and ViT (Vision Transformer)-based text 

recognition modules are compared. The CNN-based text recognition module utilizes part of 

the structure of Rosetta [31], a CNN-based text recognition model, while the ViT-based text 

recognition module utilizes part of the structure of SVTR [32], a ViT-based text recognition 

model. Since the features used as input for the text recognition module were extracted from the 

feature maps generated by a shared backbone, the text features are encoded with local 

information of characters. Therefore, our text recognition module doesn't need multiple layers 

for encoding local information of text features because it uses text features encoded with local 

information of characters as input. However, a text recognition model typically requires 

modules composed of multiple layers to encode local information, taking text images as input. 

Hence, our text recognition module can recognize text through a simpler structure than its 

original model. 

 

First, the left image of Figure 4 depicts the structure of our CNN-based text recognition module. 

It consists of three convolution blocks and one convolution layer. The inputs to the CNN-based 

text recognition module are detected text regions’ features of size Nx8xWxC extracted from 

the feature maps generated by the shared backbone using RoI Align. Here, N, 8, W, and C 

respectively represent the number of text features remaining after Adaptive NMS, the height, 

the width, and the channel of text features. Each convolution block consists of a 3x3 



convolution layer, batch norm, and ReLU. Shortcut connections are used in each convolution 

block to prevent the gradient vanishing phenomenon. In the cases of convolution blocks 1 and 

2, since the sizes of input features and output features are different during shortcut connection, 

the input features are passed through a 1x1 convolution layer with a stride of (2,1) and batch 

norm before being added to the output features of the block (dashed line in the image). After 

passing through the three convolution blocks and a 2x1 convolution layer, the final output 

feature size becomes NxWxC'. W is set to 62 because the longest text to be recognized in the 

P&ID dataset used in the experiment is 62 characters long. C' represents the number of classes 

of characters, which is 87 in this case. The character classes include uppercase and lowercase 

alphabets, numbers, and special characters. 

 

Next, here's an explanation of the ViT-based text recognition module. The ViT-based text 

recognition module utilizes part of the structure of SVTR [32]. SVTR has four structures 

depending on size, and preliminary research has been conducted to select one of these 

structures. Table 2 presents the comparison results of P&ID text recognition among SVTR 

models, using cropped text images that match the ground-truth regions on the P&ID drawings 

as the test set. 

 

Table 2. 

SVTR models’ text recognition performances on P&ID text. 

 Epoch Training Time WEM Params(M) 

SVTR-T 

20 

1h 31m 87.43 4.20 

SVTR-S 2h 9m 88.55 8.51 

SVTR-B 3h 16m 88.89 22.75 

SVTR-L 4h 33m 92.85 38.93 

 



All models were trained with the same number of epochs, and the performance of the trained 

models was measured using WEM (Word Exactly Matching). WEM determines correct 

recognition when all characters in the recognized text match those in the ground-truth text. 

Although there is a difference in the number of parameters between Tiny, Small, and Base 

models, there was not a significant performance variation. SVTR-L, with 38.93M parameters, 

was the largest model and exhibited the best text recognition performance. However, in this 

study, verifying the benefits of integrating the symbol-text detection module and the text 

recognition module is important, so a part of the structure of SVTR-T, which requires the least 

training time, is used as the text recognition module for efficiency in experiments. 

 

The ViT-based text recognition module proposed in this study only utilizes the last 3 global 

mixing blocks of the original SVTR-T model. SVTR-T consists of a patch embedding stage to 

generate text images at the patch level, 6 local mixing blocks, and 6 global mixing blocks to 

capture internal and external patterns of characters, ultimately generating a one-dimensional 

feature through a 1x1 linear layer. The local mixing blocks, which capture internal patterns of 

characters, apply a self-attention mechanism by moving a pre-defined size mask in a sliding-

window manner to encode local information of characters. However, in our ViT-based text 

recognition module, local mixing blocks were removed since input text features extracted from 

the feature maps generated by the shared backbone are already encoded with local information 

of characters. Therefore, our text recognition module utilizes the global mixing blocks of the 

multi-head self-attention mechanism to distinguish between character and non-character parts 

of the text features. Instead of using all 6 global mixing blocks, only 3 global mixing blocks 

are used in our ViT-based text recognition module, reducing text recognition time without 

compromising text recognition performance. 

 



The structure of the ViT-based text recognition module is depicted in the right image of Figure 

4. The inputs to the ViT-based text recognition module are detected text regions’ features of 

size Nx2xWxC extracted from feature maps generated by the shared backbone using RoI Align. 

Here, N, 2, W, and C denote the number of remaining text features after Adaptive NMS, the 

height, the width, and the channel of text features, respectively. Since there is no patch 

embedding module in the ViT-based text recognition module, the Nx2xWxC text features are 

flattened to Nx2*WxC dimensions to form a patch-like shape. Each global mixing block 

consists of layer norm, global mixing, MLP, and shortcut connection. In the global mixing step, 

multi-head self-attention operations are performed to differentiate the importance of text and 

non-text parts in the patch-shaped features. Subsequently, the features passed through the 3 

global mixing blocks undergo pooling, a 1x1 convolution layer, a hard swish activation 

function [47], and a dropout layer, resulting in features with a height of 1. Features with a 

height of 1 pass through a linear layer and features of size NxWxC' are output. W and C' 

represent the length of the text and the number of character classes. W and C’ set to 62 and 87. 



 

Fig. 4. Structure of CNN-based (left) and ViT-based (right) text recognition module. 

 

Finally, both CNN-based and ViT-based text recognition modules pass each final output feature 

of size NxWxC' through a CTC (Connectionist Temporal Classification) decoder [44] 

respectively to recognize text with the best combination of characters. After the text recognition 

stage, recognized texts are matched with their corresponding detected region. Then, lastly, the 

matched results (=text results) and symbol results are used for recognizing the entire P&ID 

drawing. 

 

The training loss for the text recognition module is the CTC (Connectionist Temporal 

Classification) loss [44], and the formula is as follows. First, it calculates the sum of 

probabilities of all paths 𝜋 that match the ground-truth label sequence L, when the blank B is 

omitted in the predicted sequence of length W. 



P(L|W) = ∑ 𝑝(𝜋|𝑊)𝜋∈𝐵−1(𝐿)  (5) 

𝐿𝑟𝑒𝑐 = −
1

𝑁
∑ log (𝑝(𝐿𝑖|𝑊𝑖))𝑁

𝑖=1  (6) 

The training strategy involves maximizing the log likelihood of 𝑝(𝐿𝑖|𝑊𝑖), where N denotes 

the number of text regions present in the training images. 

 

3.4. Training Details 

Figure 5 illustrates the training structure of the proposed model. The proposed model takes 

patch images of P&ID drawings as input and training proceeds from the detection module to 

the text recognition module in a single step. For patch images in the training dataset, feature 

maps are generated through the shared backbone, and symbols and texts are detected through 

the symbol-text detection module. The detection loss incurred during symbol and text detection 

consists of focal loss, generalized IoU loss, and L1 loss, as described in section 3.2. 

 

The text recognition module utilizes ground-truth text regions’ features extracted from the 

feature maps generated by the shared backbone using RoI Align. The reason why the text 

recognition module utilizes features of the ground-truth text regions during training is that the 

predicted regions cannot represent objects as precisely as the ground-truth regions, especially 

in the early stages of training. Therefore, when training the text recognition module using 

features extracted from predicted text regions, it would be influenced by noise from the 

detection module. To prevent this, features from ground-truth text regions are used during the 

training for the text recognition module. The text recognition loss, as described in section 3.3, 

utilizes CTC loss, and to train both the detection module and the text recognition module 

together, the sum of the detection loss and the CTC loss is used as the final loss. The formula 

for the final loss is as follows. 

L = 𝐿𝐷𝑒𝑡 + λ𝑟𝑒𝑐𝐿𝑟𝑒𝑐 (7) 

By adjusting the constant value multiplied by the text recognition loss, we can control the 

training of both the detection module and the text recognition module. 



 

Fig. 5. Training structure of proposed method. 

 

4. Experiments 

4.1. Experimental data 

This study utilized 200 P&ID drawings used in the industry. Out of 200 P&ID drawings, each 

20 drawings were randomly chosen for validation and testing purposes. The overall size of the 

P&ID drawing is 9933x7016. The train/validation/test datasets were created by reducing the 

size of the entire drawings by half and then dividing them into 800x800 patch images using a 

sliding window approach with a stride of 300, resulting in a total of 204 patch images per 

drawing. For the training of the proposed model, a total of 32,640 patch images were used and 

the number of classes including symbols and text was 145 (144 symbols + 1 text). In the patch 

images, there were 174,524 symbols and 489,616 text instances. Additionally, during the 

training of the text recognition module of the proposed model, text images were not required 

since the features of the ground-truth text regions were utilized. For generating ground-truth 

labels for training the proposed model, the task simply involves adding the ground-truth 

characters to instances with text class in the detection dataset. 

 

In the experimental phase of this study, our proposed model is compared with the process where 

the symbol-text detection model and the text recognition model are separated. For the process 

where the symbol-text detection model and the text recognition model are separated, 32,640 

patch images are also used for training. However, for the training of the text recognition model, 

489,616 text regions from the 32,640 patch images need to be held in image format, requiring 

1.77GB of storage space. Therefore, unlike the proposed model, the process where the symbol-

text detection model and the text recognition model are separated requires image cropping and 



storage space for training the text recognition model. 

 

4.2. Experimental results 

During the testing phase, symbol-text detection and text recognition performances are 

evaluated with the 20 P&ID test drawings consisting of 82 classes. For the evaluation of 

detection performance, precision, recall, and F1 score are used. Precision refers to the ratio of 

detected instances over IoU threshold among the overall detected instances, while recall 

signifies the ratio between detected instances over IoU threshold and the ground-truth instances. 

The value used for the IoU threshold was 0.5. F1 score, as the harmonic mean of precision and 

recall, considers both metrics together, as they are inversely related. 

 

Since the model proposed in this study is capable of end-to-end manner from symbol-text 

detection to text recognition, the performance measurement of text recognition is also 

calculated using precision, recall, and F1 score. The method for measuring text recognition 

performance is as follows. 

Precision = 
# 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑡𝑒𝑥𝑡𝑠

# 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑒𝑥𝑡𝑠 𝑜𝑣𝑒𝑟 𝐼𝑜𝑈 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 (8) 

Recall = 
# 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑡𝑒𝑥𝑡𝑠 𝑖𝑛 detected 𝑡𝑒𝑥𝑡𝑠 𝑜𝑣𝑒𝑟 𝐼𝑜𝑈 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

# 𝑜𝑓 𝑔𝑟𝑜𝑢𝑛𝑑−𝑡𝑟𝑢𝑡ℎ 𝑡𝑒𝑥𝑡𝑠
 (9) 

F1 = 
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (10) 

In the measurement of text recognition performance, precision refers to the proportion of 

correctly recognized texts among the instances detected as text over IoU threshold. The 

criterion for determining if the recognized text matches the ground-truth text is WEM, where 

correct recognition is determined if all characters in the recognized text match those in the 

ground-truth text. When comparing the recognized text with the ground-truth text, no lexicon 

is utilized. A lexicon is a list containing ground-truth texts, and it is used to match the 

recognized text with the most similar text from the lexicon-defined list to compare it with the 

ground-truth text. Therefore, text recognition evaluation utilizing a lexicon typically yields 

higher performance compared to when a lexicon is not used. However, in this study, to assess 

how well the proposed model can recognize the text present in industrial-grade P&ID drawings, 

the recognized text is directly compared with the ground-truth text using the most stringent text 

recognition criterion, WEM, without the assistance of a lexicon. Subsequently, recall represents 

the ratio between correctly recognized texts in the instances detected as text over IoU threshold 

and the instances of ground-truth texts, and it also evaluates whether the recognized text is 



correct using WEM without utilizing a lexicon. The value used for the IoU threshold was also 

0.5. Finally, the F1 score is employed to measure text recognition performance, ensuring that 

both Precision and Recall are considered together. 

 

To evaluate the proposed model, we conducted a comparative experiment with the process 

where the symbol-text detection model and the text recognition model are separated. The 

experimental results are shown in Table 3. In the table, Ours-C and Ours-V are our proposed 

models respectively with CNN-based and ViT-based text recognition modules. * indicates 

CNN-based text recognition model and module. * indicates ViT-based text recognition model 

and module. 

Table 3. 

Model performance comparison between the proposed model and process where the 

symbol-text detection and the text recognition models are separated. 

Method 
Symbol-Text Detection 

Method 
Text Recognition 

Precision Recall F1 Precision Recall F1 

Sparse 

R-CNN 
97.73 95.23 96.46 

Rosetta* 88.81 84.59 86.65 

Rosetta* 

(aug) 
90.42 86.12 88.22 

SVTR* 84.28 80.27 82.23 

SVTR* 

(aug) 
95.18 90.66 92.87 

Tesseract 66.17 63.03 64.56 

Ours-C 97.66 95.31 96.47 Ours-C* 93.26 88.93 91.04 

Ours-V 97.63 95.21 96.40 Ours-V* 95.27 90.75 92.95 

 

Ours-C is a model that integrates a CNN-based text recognition module with a symbol-text 

detection module. The detection performance of Ours-C was measured with a precision of 

97.66%, recall of 95.31%, and F1 score of 96.47%. When compared with Sparse R-CNN, it 

showed similar detection performance. Subsequently, when evaluating Ours-C’s recognized 

results of the detected text based on the WEM criteria, the precision, recall, and F1 score were 

measured at 93.26%, 88.93%, and 91.04%, respectively. When compared with Rosetta, a CNN-

based text recognition model, Rosetta exhibited lower performance with precision, recall, and 

F1 score measured at 88.81%, 84.59%, and 86.65%, respectively. Rosetta (aug), as mentioned 



in [31], is a model trained with data augmentation, where the text images are randomly shifted 

during training to account for cases where the detected text regions may not align well with the 

ground truth regions. Data augmentation includes translation as well as color jitter, Gaussian 

noise, and motion blur. The text recognition performance measured on Rosetta (aug) trained 

with the augmented data is the best performance for Rosetta’s text recognition performance 

improvement. However, it can still be observed that Our-C demonstrates superior text 

recognition performance even without data augmentation. 

 

Ours-V is a model that integrates a ViT-based text recognition module with a symbol-text 

detection module. Since Ours-V utilizes part of the structure of SVTR-Tiny for its ViT-based 

text recognition module, the comparison target SVTR refers to SVTR-Tiny and is abbreviated 

as SVTR throughout. Ours-V achieved precision, recall, and F1 score of 97.63%, 95.21%, and 

96.40%, respectively. When compared with Sparse R-CNN, similar performance was measured 

in symbol-text detection. Subsequently, when evaluating the Ours-V’s recognized results of the 

detected texts based on the WEM criteria, precision, recall, and F1 score were measured at 

95.27%, 90.75%, and 92.95%, respectively. Comparing the text recognition performance of 

Ours-V with SVTR, it can be observed that the F1 score is 10.72% (92.95% - 82.23%) higher. 

SVTR (aug) utilized data augmentation during training, including perspective distortion, 

motion blur, Gaussian noise, and rotation, as used in [32]. Since SVTR is a text recognition 

model, it only uses text images aligned perfectly with the ground truth regions for training. 

Therefore, translation was added to SVTR (aug) with the data augmentation methods of SVTR 

to account for cases where the detected text regions may not align well with the ground truth 

regions. The text recognition performance of SVTR (aug) trained on augmented data was 

measured at precision, recall, and F1 score of 95.18%, 90.66%, and 92.87%, respectively. 

Although there was performance improvement compared to SVTR, it did not surpass the text 

recognition performance of Ours-V. As an additional experiment, we applied a pretrained 

Tesseract based on LSTM (Long Short-Term Memory) [8], commonly used in most P&ID 

recognition studies, to our P&ID text recognition. The text recognition performance showed a 

low recognition rate with precision, recall, and F1 score of 66.17%, 63.03%, and 64.56%, 

respectively. 

 

In Table 4, the size, and the inference time for text recognition of our proposed model’s text 

recognition module and the text recognition model are recorded. In the table, Ours-C and Ours-



V are proposed models respectively with CNN-based and ViT-based text recognition modules. 

* indicates CNN-based text recognition model and module. * indicates ViT-based text 

recognition model and module. 

Table 4. 

Size and inference time comparison between the proposed model’s text recognition 

module and text recognition model. 

Type Method Params (M) Inference Time 

Model 

Rosetta* 11.27 1,442.56ms 

SVTR* 4.20 1,209.93ms 

Tesseract - 970.52s 

Module 
Ours-C* 9.73 247.67ms 

Ours-V* 2.47 322.56ms 

 

When comparing the text recognition time of Ours-C and Rosetta, it can be observed that Ours-

C, utilizing a smaller CNN-based text recognition module (9.73M), achieves text recognition 

much faster, with only 247.67ms required. Similarly, comparing Ours-V and SVTR, Ours-V, 

leveraging only part of SVTR's structure (2.47M), achieves much faster text recognition in 

322.56ms. The reason the text recognition module can recognize text faster than the text 

recognition model is due to the utilization of features encoded with local information of 

characters extracted from feature maps generated by a shared backbone. It eliminates the need 

for our text recognition module to be designed as a large module for encoding local information 

of characters. Therefore, when integrating the symbol-text detection module and the text 

recognition module, a lighter-weight text recognition module can be designed compared to its 

original model, enabling faster text recognition. Furthermore, the LSTM-based pretrained 

Tesseract, commonly used as a text recognition model in most P&ID recognition studies, 

recognizes images one by one and operates on the CPU, resulting in a delayed text recognition 

speed of 970.52s. 

 

According to the experimental results, the model integrated with the symbol-text detection and 

the lightweight text recognition modules demonstrates high text recognition performance even 

without data augmentation. It’s because our proposed model is capable of end-to-end learning 

from symbol-text detection to the text recognition module. As detection performance is 

measured based on IoU, there is no difference in symbol-text detection performance. However, 



when visualizing the text detection and recognition results, our proposed model has three 

differences compared with the visualized text detection and recognition results of the process 

where the symbol-text detection and text recognition modules are separated. The proposed 

model's robustness against merge, obstacle, and omitted phenomena leads to better text 

recognition. The proposed model's robustness against merge, obstacle, and omitted phenomena 

is explained in Figure 6. 

 

Figure 6 compares the text detection and recognition results between the proposed model and 

the process where the symbol-text detection module and the text recognition module are 

separated. The merge occurs when two texts on the same line are detected as one text due to a 

single-space gap between them. During end-to-end learning of our proposed model, it 

recognizes characters of texts, so it knows two texts on the same line are not one text with a 

space. Therefore, our symbol-text detection module of the proposed model can detect them in 

two words. Next is the obstacle issue, where non-text entities are detected alongside text, 

causing failure in recognition. During end-to-end learning of our proposed model, it recognizes 

characters of texts, so it can distinguish between foreground characters and background, 

allowing it to ignore non-text entities during recognition. Thus, it makes our proposed model 

more robust against the obstacle problem. Lastly, omitted refers to the problem of detecting 

part of the text, so all characters of the text can’t be recognized. However, our proposed model, 

having learned that the recognized characters influence detection can set the region of the 

detected text based on the length of the recognized characters. Therefore, our proposed model 

is more robust against the omitted problem by detecting without missing characters. Through 

Figure 6, we can confirm that our proposed models, Ours-C and Ours-V, exhibit better text 

detection and recognition results for the merge, obstacle, and omitted phenomenon compared 

to sparse R-CNN + Rosetta and sparse R-CNN + SVTR. Visualizations of Sparse R-

CNN+Rosetta and Sparse R-CNN+SVTR show the results of the process when the text 

recognition model is not trained on augmented data. While the process where the symbol-text 

detection and the text recognition models are separated improves text recognition performance 

through data augmentation, it only addresses text recognition results, leaving issues in detection 

unresolved. Therefore, when converting the recognized results into digital P&ID, the process 

where the symbol-text detection and the text recognition models are separated needs more 

corrections for the wrongly detected text results than the proposed model. However, the 

proposed model can achieve better text detection and recognition results by training the 



symbol-text detection module and the lightweight text recognition module together without 

data augmentation. 

Fig. 6. Comparison of text detection and recognition results between the proposed model 

and the process where the symbol-text detection and the text recognition models are 

separated. 

 

Figure 7 compares the P&ID recognition results of Ours-C and Ours-V with the ground-truth 

objects. The orange boxes represent symbols’ bounding boxes, while the green boxes represent 

text bounding boxes. The red text indicates the ground-truth and recognized characters. 



 



Fig. 7. Ours-C and Ours-V P&ID recognition results. 

 

4.3. Ablation study 

In the ablation study, balancing the training of the symbol-text detection and the text 

recognition modules is conducted by increasing the training proportion of the text recognition 

module. 

 

Table 5. 

Ablation study of Ours-C. 

𝑟𝑒𝑐 
Detection End-to-End 

Precision Recall F1 Precision Recall F1 

1 97.66 95.31 96.47 93.26 88.93 91.04 

100 97.49 94.38 95.91 95.65 90.76 93.14 

200 97.24 94.09 95.64 95.58 90.20 92.81 

300 97.58 94.36 95.94 95.40 90.34 92.80 

400 97.58 94.42 95.97 94.53 89.65 92.03 

500 97.56 94.03 95.76 95.70 90.54 93.05 

 

Table 5 presents the results of balancing the training between the symbol-text detection module 

and the text recognition module by varying the constant value of the text recognition module's 

loss in Ours-C. When the constant value is fixed at 1, the detection performance is measured 

to be the highest based on the F1 score. Regarding text recognition performance, when the 

constant value is 500, the precision is measured to be the highest at 95.70%, while at 100, recall 

and F1 score are measured to be the highest. Comparing between the constant value of 100 and 

1, it can be observed that the text recognition performance improved by 2.1% (93.14% - 

91.04%) based on the F1 score. The other constant values also showed higher text recognition 

performance than 1. Through the experiment, it was confirmed that the training between the 

two modules can be balanced. 

 

Table 6. 

Ablation study of Ours-V. 

𝑟𝑒𝑐 
Detection End-to-End 

Precision Recall F1 Precision Recall F1 



1 97.63 95.21 96.40 95.27 90.75 92.95 

100 97.37 94.49 95.91 96.56 91.67 94.05 

200 97.33 94.54 95.91 96.24 91.51 93.82 

300 97.57 94.66 96.09 96.11 91.34 93.66 

400 97.58 94.42 95.97 94.53 89.65 92.03 

500 97.46 94.17 95.79 96.16 91.20 93.62 

 

Table 6 shows the results of balancing the training between the symbol-text detection module 

and the text recognition module in Ours-V by varying the constant value of the text recognition 

module's loss. While there is a slight decrease in detection performance compared between 

constant values of 1 and 100, the text recognition performance is increased by 1.1% (94.05% - 

92.95%) which is the most significant margin based on the F1 score. Except for 400, for the 

remaining constant values, although symbol-text detection performances decrease compared 

to 1, it can be observed that text recognition performances improve. 

 

5. Conclusions and future work 

We proposed a new model that integrates a single symbol-text detection module and a text 

recognition module, enabling the recognition of symbols and text in P&ID with one model. By 

applying the text spotting method, which utilizes text features for recognition, we were able to 

integrate the symbol-text detection module and the text recognition module. The proposed 

model facilitates end-to-end learning from the symbol-text detection module to the text 

recognition module, so it can get better text detection and recognition results than the process 

where the symbol-text detection and text recognition modules are separated. Additionally, 

during the training of the proposed model, there is no need to generate and store text images 

for training, as the text recognition module utilizes text features. Furthermore, since detected 

text regions’ features extracted from the feature maps generated by the shared backbone are 

encoded with local information of characters, it is possible to achieve text recognition with a 

lightweight text recognition module. To assess the practical applicability of the proposed model, 

we measured its performance on P&ID test drawings used in actual industries. The symbol-

text detection performance achieved a maximum precision of 97.63%, recall of 95.21%, and 

F1 score of 96.40%. For text recognition performance, without using a lexicon, the model 

achieved a maximum precision of 95.27%, recall of 90.75%, and F1 score of 92.95%. The 

experimental results demonstrate that the proposed model can achieve high-performance 



symbol-text detection and text recognition even without data augmentation. Additionally, 

through experimentation, we confirmed that the training of the symbol-text detection module 

and the text recognition module of the proposed model can be balanced. 

 

In P&ID drawings, there are numerous horizontal symbols and texts. Therefore, this study 

aimed to simplify the complex process of recognizing symbols and texts by integrating a single 

symbol-text detection module and a text recognition module into one model using the text 

spotting method, with the goal of accurately recognizing horizontal symbols and texts. 

Therefore, the rotation of oriented symbols and texts with relatively fewer occurrences was not 

considered. Thus, to get a more accurate representation of the oriented symbols and text regions 

and improve oriented text recognition performance, future work will focus on an integrated 

model with symbol-text detection and text recognition modules capable of recognizing the 

rotation information of symbols and texts. 
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